

EXPLICADORES.NET HARDWARE PROFESSOR FLÁVIO BRAGANÇA

bit

- Menor unidade da informação..
- Representado de forma binária;
- 0 ou 1;
- Binary Term → Termo binário
- 10010111
- 8 bits;
- $0 \rightarrow 0v$; $1 \rightarrow 5v$;

Grupos de bits

Nome	Quantidade	Combinações
Nibble →4 bits	s 2 ⁴	
Byte	\rightarrow 8 bits 2^8	
Word	\rightarrow 16 bits	2^{16}
Double Word	\rightarrow 32 bits	2^{32}
Quad Word	\rightarrow 64 bits	2^{64}

Unidades de medida

UNIDADES EM BITS (velocidade)

K	\rightarrow	KILO	$\rightarrow 000$
M	\rightarrow	MEGA	$\rightarrow 000\ 000$
G	\rightarrow	GIGA	$\rightarrow 000\ 000\ 000$
T	\rightarrow	TERA	$\rightarrow 000\ 000\ 000\ 000$
P	\rightarrow	PETA	→ 000 000 000 000 000
E	\rightarrow	EXA	$\rightarrow 000\ 000\ 000\ 000\ 000\ 000$
Z	\rightarrow	ZETA	→ 000 000 000 000 000 000 000
Y	\rightarrow	YOTA	\rightarrow 000 000 000 000 000 000 000 000

UNIDADES E BYTES (armazenamento)

Qi	\rightarrow	Quibi	$\rightarrow 1024$
Mi	\rightarrow	Mebi	$\rightarrow 1024\ 1024$
Gi	\rightarrow	Gibi	\rightarrow 1024 1024 1024
Ti	\rightarrow	Tebi	\rightarrow 1024 1024 1024 1024
Pi	\rightarrow	Pebi	→ 1024 1024 1024 1024 1024
Ei	\rightarrow	Ebi	\rightarrow 1024 1024 1024 1024 1024 1024
Zi	\rightarrow	Zebi	\rightarrow 1024 1024 1024 1024 1024 1024 1024
Yi	\rightarrow	Yobi	\rightarrow 1024 1024 1024 1024 1024 1024 1024 1024

16GiB RAM \rightarrow 16 Gibi bytes de ram 16 x 1024 x 1024 x 1024

CONVERSÃO DE BASES

1 CARACTERE = 1 BYTE

EU VOU PARA A EEAR.

19 BYTES.

BASES:

BINÁRIA

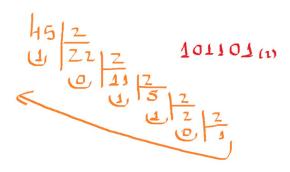
- BASE 2
 - 0 OU 1;
 - 2 VALORES POSSÍVEIS;
 - 1010101₍₂₎

OCTAL

- BASE 8;
- 0 A 7;
- 8 VALORES POSSÍVEIS;
- 7675₍₈₎;

DECIMAL

- BASE 10;
- 0 A 9;
- 10 VALORES POSSÍVEIS;
- 988₍₁₀₎;

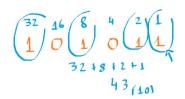

HEXADECIMAL

- BASE 16;
- (0 A 9) E DE (A A F);
- 16 VALORES POSSÍVEIS;
- ABC3_{(16);}

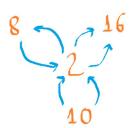
CONVERSÃO DE BASES

DECIMAL → BINÁRIA;

DIVISÃO SUCESSIVA


TÉCNICA DOS PESOS

BIZUX:


- UM NÚMERO PAR PERMANECE PAR EM QUALQUER BASE;
- UM NÚMERO ÍMPAR PERMANECE ÍMPAR EM QUALQUER BASE;

BINÁRIA → DECIMAL

101011 (2)

 $DECIMAL \rightarrow OCTAL$

PRIMEIRO PASSO : CONVERTER PARA BINÁRIO

SEGUNDO PASSO : SEPARAR EM GRUPOS DE 3 BITS (111 \rightarrow 7)

TERCEIRO PASSO : CONVERTER OS GRUPOS

$OCTAL \rightarrow DECIMAL$

$$47_{(8)}$$
 4^{21}_{100}
 4^{21}_{111}
 4^{21}_{111}
 1^{32}_{16}
 1^{6}_{111}
 3^{2}_{16}
 1^{6}_{100}
 3^{2}_{100}
 3^{2}_{100}
 3^{2}_{100}
 3^{2}_{100}
 3^{2}_{100}
 4^{21}_{111}
 1^{20}_{100}
 4^{21}_{111}
 1^{20}_{100}
 1^{2}_{100}
 1^{2}_{100}
 1^{2}_{100}
 1^{2}_{100}
 1^{2}_{100}
 1^{2}_{100}
 1^{2}_{100}

DECIMAL PARA HEXADECIMAL → BASE ALFANUMÉRICA;

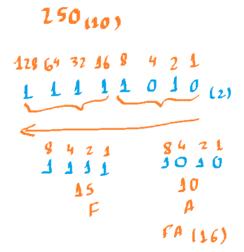
 $A \rightarrow 10$

 $B \rightarrow 11\,$

 $C \rightarrow 12$

 $D \rightarrow 13\,$

 $E \rightarrow 14\,$


 $F \rightarrow 15$

PRIMEIRO PASSO SEGUNDO PASSO TERCEIRO PASSO : CONVERTER PARA BINÁRIO

SEPARAR EM GRUPOS DE 4 BITS ($15 \rightarrow 1111$)

CONVERTER OS GRUPOS

$HEXADECIMAL \rightarrow DECIMAL$

$HEXADECIMAL \rightarrow OCTAL$

$OCTAL \rightarrow HEXADECIMAL$

