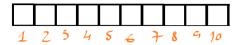


EXPLICADORES.NET 19/12/22 FLÁVIO BRAGANÇA HARDWARE

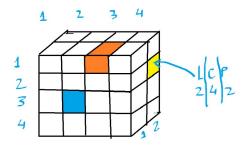
Organização da memória

Introdução

Na arquitetura X86, por motivos históricos, considera-se que cada endereço de memória armazena dados de oito bits, e é por isso que continuamos nos referindo á capacidade de memória em **BYTES**;


160 MiB (160 Mibi Bytes)

Representação de endereços


Há duas formas de se representar endereços.

Endereçamento linear/PLANO – Endereços numerados sequencialmente, funcioanando no modo protegido e no modo de 64 bits.

- CRESCENTE;
- O PRIMEIRO ENDEREÇO É O MENOR;
- O ÚLTIMO ENDEREÇO É O MAIOR;
- O ENDEREÇO É FORMADO APENAS POR UM NÚMERO;

Endereçamento segmentado – Neste sistema, os endereços são representados no formato segmento:offset. Um seguimento é um pedaço da memória do computador, enquanto que o offset (deslocamento) é a posição do dado a ser lido ou armazenado dentro desse bloco de memória.

- OFFSET = PROFUNDIDADE;
- LINHA, COLUNA E PROFUNDIDADE;

TODOS OS ENDEREÇOS DE MEMÓRIA ESTÃO NA BASE (16) → HEXADECIMAL

Organização da memória no modo real

SEGMENTADO

No modo real a memória é dividida em segmentos de 64KiB. No modo de endereçamento segmentado.

Organização da memória no modo protegido

No modo protegido a memória pode ser acessada de uma das seguintes maneiras por programas:

Modo Plano/LINEAR básico : Neste modo, a memória é acessada como uma entidade única, sem qualquer tipo de segmentação.

Modo plano/LINEAR protegido : Igual ao anterior, porém o processador é configurado para que uma exceção (mensagem de erro) seja dada caso o processador tente acessar uma área de memória acima da que está fisicamente instalada no computador.

Modo multisSEGEMENTADO: É o modelo normalmente usado quando estamos trabalhando no modo protegido. Neste modo a memória é dividida em segmentos de tamanho variado, e estes segmentos podem ser protegidos, ou amarrados a um programa específico. Fazendo que um programa não invada a área de memória que está sendo utilizada por outro.

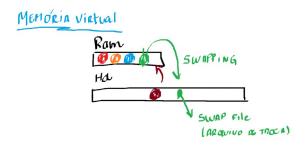
MODO

MODO REAL MODO PROTEGIDO TIPO DE ENDEREÇAMENTO SEGMENTADO PLANO OU SEGMENTADO

Proteção de memória

Introdução

- → IMPEDE QUE UM PROGRAMA INVADA A ÁREA DO OUTRO;
- → PROTEGE UM PROGRAMA DE INVADIR A ÁREA DE OUTRO PROGRAMA;
- → A PROTEÇÃO DE MEMÓRIA ESTÁ NO HARDWARE;
- ightarrow GPF ightarrow GENERAL PROTECTION FAILURE ightarrow FALHA GERAL NA PROTEÇÃO, MESMO QUE O HARDWARE TENHA A PROTEÇÃO DE MEMÓRIA O SISTEMA OPERACIONAL PODE CAUSAR ESTE ERRO;


No modo protegido cada segmento é uma área protegida de memória, que só pode ser acessada por um programa específico. Com isso, para cada segmento de memória, o sistema operacional precisa saber:

ESTE RECURSO SÓ É APLICADO NO MODO PROTEGIDO:

MODO REAL \rightarrow POUCOS RECURSOS \rightarrow BAIXA PERFORMANCE \rightarrow COMPATIBILIDADE (PROGRAMAS ANTIGOS RODANDO EM UM SISTEMA NOVO;

MODO PROTEGIDO → MODO ONDE O PROCESSADOR ESTÁ NA SUA CAPACIDADE MÁXIMA DE PERFORMANCE;

Paginação

- SWAPPING \rightarrow PROCEDIMENTO DE TROCA DE INFORMAÇÕES ENTRE O HD E A RAM;
- SWAP FILE → ARQUIVO DE TROCA, ARQUIVO GERADO NO HD COM AS INFORMAÇÕES ORIUNDAS DA RAM;
- O HD É MUITO MAIS LENTO QUE A RAM;
- A MEMÓRIA VIRTUAL É UMA SOLUÇÃO PARA A FALTA DE MEMÓRIA;
- PORÉM O USO DO HD PREJUDICA À PERFORMANCE:

MEMÓRIA TOTAL = RAM +ESPAÇO DE SWAP

QUANDO USAMOS A MEMÓRIA RAM COM MEMÓRIA VIRTUAL, A MEMÓRIA SERÁ DIVIDIDA DE DUAS MANEIRAS:

- → PAGINAÇÃO;
 - A MEMÓRIA É DIVIDA EM PÁGINAS, DE TAMANHO PADRONIZADO;
 - TODAS AS PÁGINAS DE UMA MEMÓRIA TEM SEMPRE O MESMO TAMANHO;
 - MEMÓRIAS DIFERETES PODEM TER PÁGINAS DE TAMANHO DIFERENTE:

						~	
	SE	\sim R $^{\prime}$		17	\sim		١.
\rightarrow	>-	(¬ IV	חחו	4 I A	41.	Δι	J.
,		U ::		•	~ Y		-,

A MEMÓRIA É DIVIDIDA EM PEDAÇOS DE TAMANHO VARIADO; O TAMANHO DE CADA SEGMENTO DEPENDE DO SISTEMA OPERACIONAL:

O sistema de paginação permite o uso de memória virtual, permitindo que o processador acesse mais memória ram do que existe no computador quando ele está no modo protegido ou quando ele está no modo de 64 bits, simulando a memória faltosa em um disco de armazenamento em massa, como por exemplo o HD. Quando o sistema de memória virtual está desabilitado, cada endereço linear interno do processador corresponderá a um endereço físico externo da memória ram. Porém quando o sistema está habilitado, a memória ram é dividida em blocos chamados páginas. No disco um arquivo chamado arquivo de troca ou swap file é criado e dividido em blocos de igual tamanho.

Modos de paginação:

Paginação de 32 bits : Pode usar páginas e 4KiB ou de 4 MiB (se o processador tiver a extensão PSE. Page Size Extensions.

Paginação PAE (Physical Address Extensions): Pode usar páginas de 4 KiB ou 2 MiB;


Paginação IA-32e (modo 64 bits): Pode usar páginas de 4 KiB, 2MiB ou 1GiB (nem todos os processadores suportam páginas de 1GiB);

O modo de paginação utilizado dependerá do sistema operacional.

Multitarefa

TIME SLICING→ TÉCNICA ONDE O PROCESSADOR FICA UMA FATIA DE TEMPO EM CADA TAREFA;

TIME SLICE → FATIA DE TEMPO, TEMPO QUE O PROCESSADOR FICA EM CADA TAREFA;

A multitarefa é um recurso que permite que o processador execute um pouco de cada programa que está carregando por vez, importante lembrar que neste tipo de contexto o sistema operacional também é um programa.

A técnica empregada é a técnica de time slicing (fatiando o tempo) onde cada programa será executado em uma fatia de tempo.

O controle da multitarefa pode ser feito por hardware ou por software.

O controle de multitarefa por hardware só existe no **modo protegido**.

O modo 64 bits faz o controle de multitarefa por software.

A **MULTITAREFA REAL** SÓ ACONTECE QUANDO TEMOS VÁRIOS PROCESSADORES:

→ VÁRIOS PROCESSADORES NA MESMA PLACA MÃE (MULTIPROCESSADORES):

→ VÁRIOS NÚCLEOS DENTRO DE UM ÚNICO PROCESSADOR;

Registradores

- MEMÓRIAS MAIS RÁPIDAS QUE EXISTEM;
- MENORES MEMÓRIAS QUE EXISTEM;
- MEMÓRIAS INTERNAS DO PROCESSADOR:

Registradores de uso geral

REGISTRADORES QUE PODEM SER USADOS PELOS PROGRAMADORES:

Registradores que podem ser usados livremente pelo programador. Também chamados de GPR (General Purpose Registrer).

GPS = GLOBAL POSITION SYSTEM

GPF = GERERAL PROTECTION FAILURE GPR = GENERAL PURPOSE REGISTER

A arquitetura x86 possui 4 registradores e uso geral, são eles: (A,B,C,D)

A (Acumulador): Normalmente usado para armazenar dados a serem manipulados e resultados de operações.

NORMALMALMENTE UTILIZADO PARA GUARDAR RESULTADOS PARCIAIS;

B (Base): Normalmente usado para armazenar informações de endereçamento.

ENDEREÇO ONDE A INFORMAÇÃO ESTÁ ARMAZENADA

C (**Contador**) : Normalmente usado como contador de lações (loops).

VARIÁVEL CONTADORA NOS LOOPS;

D (**Dados**) : Normalmente usado para armazenar informações de entrada e saída.

ARMAZENAM OS DADOS

Flags

A arquitetura X86 possui um registrador de 32bits chamado de EFLAGS que armazena diversos FLAGS.

FLAGS → SITUAÇÕES QUE ACONTECEM NO SISTEMA

Registradores de controle

São utilizados para armazenar o **modo de operação do processador** e a caracteística da tarefa a sendo executada no momento.

Os principais tipos são :

CR1, CR2, CR3, CR4, CR5, CR6, CR7, CR8 e EFER.

- MODO REAL
- MODO PROTEGIDO

Registradores de Debug

DEBUG → COMPILAÇÃO PASSO A PASSO; EXECUTAR O PROGRAMA AOS POUCOS PARA DESVENDAR ERROS;

Os processadores X86 tem **suporte a Debugs** (encontrar falhas e problemas em programas), estas informações ficam armazenadas em registradores de debug chamados de

DR0, DR1, DR2, DR3, DR4, DR5, DR6, DR7.

Registradores de gerenciamento do memória

Responsáveis pelo controle de operações na memória, são eles:

→ TODAS AS OPERÇÕES NECESSÁRIAS PARA A MEMÓRIA FUNCIONAR;

GDTR, LDTR, IDTR, TR;

Outros registradores

Cada processador poderá ter outros registradores específicos.

REGISTRADORES ESPECÍFICOS PARA CADA FABRICANTE;

Interrupções e exceções

Interrupções

São procedimentos executados pelo dispositivos que pedem a atenção do processador.

Exsitem três tipos de Interrupções:

 $DISPOSITIVO \rightarrow INTERRUPÇÃO \rightarrow PROCESSADOR$

Interrupção de <u>hardware</u> mascarável

Interrupções de dispositivos.

PODE SER IGNORADA MOMENTANEAMENTE

PINO INTR

O fato do processador possuir apenas uma linha para requisições de interrupções exige que exista um controlador de interrupções externo, que faz o papel de árbitro das isntruções que por ventura utilizarão este referido pino do processador. Utilizam o pino INTR.

Interrupções de <u>hardware</u> não mascarável

Interrupções de dispositivos.

NÃO PODE SER IGNORADA MOMENTANEAMENTE
PINO NMI (NO MASCARABLE INTERRUPTION)

Utilizam o pino NMI para pedidos de interrupções

Interrupções de software

INTERRUPÇÕES GERADAS POR PROGRAMAS

PINO INT

Utilizam o pino INT para pedidos de interrupções.

	_		

INTERRUPÇÃO DE HARDWARE MASCARÁVEL INTERRUPÇÃO DE HARDWARE NÃO MASCARÁVEL INTERRUPÇÃO DE SOFTWARE INTERRUPÇÃO IPI PINO INTR NMI INT IPI

APIC (Advanced Programmable Interrupt Controller)

Controlador interno do processador responsável por lidar com estas interrupções.

INTERRUPÇÃO IPI

OBS.: Ainda existe um quarto tipo de interrupção chamada de IPI (Interprocessor Interruption), que é utilizada em sistemas **multiprocessados.**

Exceções

Outra maneira de fazer o processador parar a execução do programa atual é através da exceção de software. Funciona como uma mensagem de erro interna do processador.

Exceções possíveis dos processadores X86:

Divisão por zero : Uma instrução tentou executar uma divisão por zero; **Debug :** O contador de programa atingiu um dos endereços de parada.

Parada: O programa atingiu uma instrução de parada;

Overflow : Ocorre quando o resultado de uma expressão não cabe no registrador destino:

Valor fora dos limites: Quando o valor está fora dos limites permitidos;

Opcode inválido: Gerada quando o processador encontra um valor que foi dado a ele como se fosse uma instrução, mas não corresponde a nenhuma instrução no conjunto de instruções;

Dispositivo não disponível : Quando o processador recebe uma instrução multimedia e o mesmo não possui co-processador matemático;

Falha dupla encontrada : Quando o processador encontra uma falha ao tentar executar o código responsável por lidar com a exceção encontrada;

TSS inválido: A tabela TSS de uma tarefa é inválida;

Segmento não presente: Quando o segmento de um registrador é inválidoo;

Exceção de pilha: Ocorre quando a pilha estoura ou está vazia;

Falha geral de proteção : Quando um programa invade a área de outro programa GPF;

Falha de página: Quando uma tabela ou página não está presente;

Exceção da unidade de ponto flutuante : Quando a unidade de ponto flutuante do computador encontra um erro;

Verificação de alinhamento : Gerada quando o endereço de memória não está alinhado:

Exceção SIMD : Gerada quando uma instrução SIMD gerou um erro.

